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Abstract

This paper is concerned with causality of the gradient elasticity models of heterogeneous materials. As a rule, these

models are not strictly causal since they allow an infinite speed of energy transfer by means of either propagating or

transient evanescent waves. A discussion is presented in this paper of both physical and mathematical implications of this

fact. This discussion is carried out employing one-dimensional (1D) second-order gradient models. A phenomenological

enhancement is proposed, which makes these models causal. The main idea behind this enhancement is that a partial

differential equation that governs dynamic behaviour of a causal gradient elasticity model must be of the same order with

respect to spatial coordinate and with respect to time. The validity of this idea is confirmed in this paper by deriving a

second-order 1D continuum model for concrete. A brief comparison is provided in conclusion of the equations of motion

of the 1D second-gradient elasticity models and those used in dynamics of thin bars. It is shown that the proposed causal

model corresponds to the most advanced dynamic models of such bars, namely to the Timoshenko model for the bending

motion and the Mindlin model for the longitudinal motion of a bar.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

To approximate the mechanical behaviour of heterogeneous materials, generalized continuum models are
often used, the general theories of which were developed by Mindlin [1], Green and Rivlin [2] and Suhubi and
Eringen [3]. These models are homogeneous but more enhanced than the classical elastic continuum. The
enhancement can be achieved via introduction of additional degrees of freedom (for example, of the rotational
ones like in the Cosserat continuum [4]) or by accounting for the higher-order differential operators in the
equations of motion (the so-called gradient elasticity models).

The generalized continua can accurately predict only those effects of heterogeneity, which correspond to the
spatial scales at least a few times larger than the characteristic scale of heterogeneity. For example, a
dependence of wave velocity of propagating waves on their frequency (the wave dispersion) can be predicted
only of waves whose wavelength is sufficiently larger than the scale of heterogeneity. During the last decade,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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a number of papers were published on dynamic formulation of the generalized continua and on propagation
of elastic waves in these continua. Particular attention in these papers was paid to (i) finding a comprehensive
link between the underlying heterogeneity and the effective parameters of the generalized continua, (ii)
reducing the number of non-classical parameters so that it would be feasible to measure these parameters, and
(iii) studying propagation of high-frequency waves, the wavelength of which is comparable with the
characteristic lengthscale of heterogeneity. These issues were addressed in the studies of Vardoulakis and
Aifantis [5], Rubin et al. [6], Mühlhaus and Oka [7], Georgiadis et al. [8,9], Chen and Fish [10], Suiker et al.
[11–13], Fish et al. [14,15], Andrianov [16], Wang and Sun [17], Askes et al. [18–20], Metrikine and Askes [21],
Askes and Metrikine [22] Andrianov et al. [23].

The models proposed in the majority of the above-mentioned papers are stable and do ensure
that the group velocity of propagating elastic waves has an upper limit thus satisfying the basic
requirements of dynamic consistency. However, almost none of these models satisfy the
Einstein’s causality (also called strict causality [24,25]), which requires that no signal can travel faster than
the velocity of light in vacuum. The majority of high-gradient models cited above do allow elastic energy to
travel infinitely fast. This happens in spite of top-bounded group velocity of the propagating waves. The
energy is transferred by means of evanescent (exponentially decaying with distance from a point of
excitation) waves, which, very often, may exist in the generalized continua. Evanescent elastic
waves can be observed in reality, while testing basically all heterogeneous materials. For example,
in crystals (and in other periodically inhomogeneous materials) these waves occur if the excitation frequency
belongs to the stop bands [26], within which waves experience resonance reflection. In disordered
heterogeneous materials evanescent waves occur because of scattering on heterogeneities [27]. What,
however, does not occur in reality but is predicted by many generalized continuum models (especially, by the
gradient-elasticity models), is that evanescent waves may transfer elastic energy through a material
instantly.

In this paper, an enhancement is proposed of the gradient elasticity models, which makes them
causal (throughout this paper causality is understood in the original Einstein’s sense). The basic idea
behind this enhancement is that higher-order spatial gradients in gradient elasticity models must be
accompanied by higher-order time derivatives. The validity of this idea is demonstrated in this paper by
considering a 1D second-order gradient model. First, it is shown that by adding a higher-order time
derivative (the fourth time derivative of displacement in this case) to the governing equation, the earlier
derived models, such as in Refs. [8,21,22,28], can be made causal. Then, a continualization procedure
developed in Refs. [22,28] is applied to a discrete chain of masses and springs, which is adopted as a 1D model
of concrete on meso-level (two different types of masses and three different types of springs are used to mimic
the aggregate, cement paste and interface fractions of concrete). Applying this procedure, a governing
equation is derived for a second-order continuum, which contains fourth derivatives of displacement both
with respect to time and the spatial coordinate. Thereby it is demonstrated that the presence of higher-order
time derivatives is natural in a higher-order homogeneous continuum, which approximately describes a
heterogeneous material.

This paper is structured as follows. In Section 2, a brief overview of 1D gradient elasticity models is
presented and their dynamic properties are discussed. In Section 3, pulse-excitation and propaga-
tion of a plane wave in a gradient-elastic material is discussed. The material is described by a
gradient elasticity model, which has a top-bounded group velocity of propagating waves. It is
shown that this model is not causal and the reason of this non-causality is explained. In Section 4, a causal
gradient elasticity model is introduced by adding a higher time derivative into the equation of motion.
A discussion is provided, based on a dispersion analysis, as to why such introduction ensures causality. In
Section 5, the causal model introduced in Section 4 is derived by continualizing equations of motion of a
discrete chain of masses and springs. The elements of this chain are chosen such as to represent
the meso-structure of concrete. In Section 6, a mathematical analogy is discussed between 1D gradient
elasticity models and the models, which are used for predicting the longitudinal and transverse motions of a
thin bar. It is shown that the causal model proposed in this paper is governed by equation of exactly the same
form as the Timoshenko model for the transverse motion and the Mindlin model for the longitudinal motion
of a thin bar.
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2. Overview of 1D gradient elasticity models

All gradient elasticity models can be viewed as enhancements of the classical continuum. For the sake of
clarity these enhancements will be presented and discussed shortly in this section on the hand of 1D second-
order models. In accordance with the conventional terminology, the equations of motion for these models are
partial differential equation of the order four with respect to the spatial coordinate. The only field variable in
these equations is the longitudinal (codirected with the particle motion) displacement of the continua.

The simplest second-order model may be derived by a standard continualization of the equations of motion
of a system of discrete particles [7,11,12,18] or by homogenizing a periodically inhomogeneous continuum
taking into account its multiple spatial scales [10]. In 1D case the equation of motion for this model reads

u;tt � c2u;xx � c2l2A22u;xxxx ¼ 0, (1)

where u(x,t) is the displacement of the continuum along the x-direction, t is the time, c is the classical wave
speed, l is the lengthscale of the material heterogeneity, and A22 is a dimensionless positive parameter (model
dependent).

The model governed by Eq. (1) can describe experimentally observed dispersive character of wave
propagation in heterogeneous materials. However, this model suffers of a serious drawback: it is unstable at
the short-wave domain [18,21]. Indeed, assuming that a harmonic wave of the form

u ¼ U expðiot� ikxÞ (2)

propagates through the continuum described by Eq. (1), the following dispersion equation can be obtained

�o2 þ k2c2 � k4l2c2A22 ¼ 0. (3)

It can be readily seen from Eq. (3) that as the wave number k exceeds the critical value kcr ¼ 1
�

l
ffiffiffiffiffiffiffiffi
A22

p� �
, the

angular frequency o becomes imaginary, which corresponds to the exponential instability.
It is important to underline that the instability of short waves (shorter than the lengthscale) is physically

acceptable for the model, Eq. (1), that is applicable only for waves, which are at least a few times longer than
the characteristic lengthscale. However, mathematical analysis of Eq. (1) is considerably complicated by this
instability.

There are a few possibilities to modify Eq. (1) so that the model becomes unconditionally stable without
increasing the order of this equation. One modification was presented by Askes et al. [18]. It is based on a
constitutive equation, which is used in gradient plasticity and gradient damage mechanics. This constitutive
equation, as proposed on phenomenological grounds by Aifantis [29], in 1D case reads

s ¼ Eð�� l2�;xxÞ, (4)

where s and e are the axial stress and strain. In correspondence with this constitutive equation, the equation of
motion, Eq. (1), was modified by Askes et al. [18] to

u;tt � c2u;xx þ c2l2A22u;xxxx ¼ 0 (5)

which differs from Eq. (1) by just the sign of the last term (except the coefficient A22, whose value may differ
from that in Eq. (1) remaining, however, positive). Consequently, the dispersion equation, corresponding to
Eq. (5) differs from Eq. (3) by the sign of the last term. Solving this dispersion equation, the following
expressions can be found for the angular frequency and the group velocity of waves in the continuum
modelled by Eq. (5):

o ¼ �kcð1þ k2l2A22Þ
1=2; cgr ¼

do
dk
¼ � c

1þ 2k2l2A22

ð1þ k2l2A22Þ
1=2

. (6)

The expression for the angular frequency shows that this frequency is real for all wavenumbers, which
implies that the model is unconditionally stable. The expression for the group velocity, however, reveals that
the shorter the waves (the larger the wavenumber k), the faster the elastic energy propagates through the
continuum. The infinite energy propagation velocity (this equals in the case at hand to the group velocity) is
also permitted by the model at infinitely short wavelengths. This can be considered as a drawback of the model



ARTICLE IN PRESS
A.V. Metrikine / Journal of Sound and Vibration 297 (2006) 727–742730
governed by Eq. (5), since it is unnatural that elastic waves may transfer energy infinitely fast. Let us underline
once again, however, that application of basic physical principles to the model, which is supposed to work
only for relatively long waves is questionable.

Another modification of Eq. (1) was derived by Fish et al. [14], by applying a homogenization technique to a
periodically inhomogeneous continuum and taking into account both spatial and temporal scales. The
equation of motion for the mean displacement obtained in Ref. [14] can be written as

u;tt � c2u;xx � l2A21u;xxtt ¼ 0, (7)

where A21 is a dimensionless positive parameter.
The dispersion equation for the model governed by Eq. (7) (which is obtained by assuming the travelling

wave solution, Eq. (2)) reads

�o2 þ k2c2 � o2k2l2A21 ¼ 0. (8)

On the basis of this equation, the following expressions can be found for the angular frequency and the
group velocity

o ¼ �
kc

ð1þ k2l2A21Þ
1=2
; cgr ¼

c

ð1þ k2l2A21Þ
3=2

. (9)

These expressions show that the model governed by Eq. (7) is unconditionally stable and propagating waves
cannot transfer energy any quicker than with velocity c. The latter property of this model makes it superior to
the model governed by Eq. (5). However, the model governed by Eq. (7) predicts that short waves transfer
elastic energy with almost zero speed (as it follows from Eq. (9)). This is quite unrealistic.

It is natural to expect that a combination of the models governed by Eqs. (5) and (7) could also be derived.
Such a model would include two higher order terms proportional to u,xxxx and u,xxtt and, as all the preceding
models, would be a particular case of the general theory of Mindlin [1]. This model can indeed be found in the
literature. It was used, for example, by Georgiadis et al. [8] and was derived from a discrete model by
Metrikine and Askes [21], who employed a non-standard continualization procedure. The governing equation
for this model can be written as

u;tt � c2u;xx � l2A21 u;tt � c2
A22

A21
u;xx

� �
;xx

¼ 0. (10)

The angular frequency and the group velocity for this model can be found to depend on the wavenumber as

o ¼ �kc
ð1þ k2l2A22Þ

1=2

ð1þ k2l2A21Þ
1=2
; cgr ¼ �c

1þ 2k2l2A22 þ k4l4A21A22

ð1þ k2l2A21Þ
3=2
ð1þ k2l2A22Þ

1=2
. (11)

These expressions show that the model is unconditionally stable and that propagating waves may transfer
elastic energy with the speed, which equals c for long waves and cðA22=A21Þ

1=2 for short waves. Thus, it may
seem that the model governed by Eq. (10) is both stable and provides the lower and upper bounds for the
speed of elastic energy transfer. The latter statement, however, is not quite correct. In spite of the bounded
speed of energy transfer by propagating waves, the model does allow an infinite speed of elastic energy transfer
by evanescent waves, thus suffering of non-causality. This issue is discussed in the following section.
3. Dynamic response to a pulse load

To demonstrate that the model governed by Eq. (10) is not causal, a transient dynamic response of a half-
space, whose material is modelled by Eq. (10), to a uniform and normal pulse-loading applied to the surface is
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considered in this section. The system of equations, which govern this response, is given as

u;tt � u;xx � A21u;xxtt þ A22u;xxxx ¼ 0; x � 0; t � 0;

u x; t ¼ 0ð Þ ¼ u;t x; t ¼ 0ð Þ ¼ 0; x � 0;

u;xx x ¼ 0; tð Þ ¼ 0; t � 0;

u;x þ A21u;xtt � A22u;xxx
� �

x¼0 ¼ Pd tð Þ; t � 0;

lim
x!1

u x; tð Þ ¼ 0; to1;

(12)

where x ¼ x/l and t ¼ tc/l are the dimensionless coordinate normal to the half-space surface and
dimensionless time, P ¼ F0/(rc) (F0 is the intensity density of the pulse with the dimension N sm�2), and
d(t) is the Dirac delta function. The boundary conditions in Eq. (12) are written in correspondence with the
equation of motion, see Refs. [19,28].

The problem defined by Eq. (12) can be solved by applying the integral Laplace transform over the
dimensionless time t. Defining this transform as

U x; sð Þ ¼
Z 1
0

u x; tð Þ exp �stð Þdt (13)

the following boundary-value problem is obtained in the Laplace domain

A22U ;xxxx �U ;xx 1� s2A21

� �
þ s2U ¼ 0 x � 0, (14)

U ;xxðx ¼ 0; sÞ ¼ 0;

ðU ;x þ s2A21U ;x � A22U ;xxxÞx¼0 ¼ P;
(15)

lim
x!1

Uðx; sÞ ¼ 0 ReðsÞ40, (16)

The general solution of Eq. (14), which satisfies the boundary condition at the infinity, Eq. (16), can be
written as

U ¼ C1 expð�k1xÞ þ C2 expð�k2xÞ, (17)

where k1 and k2 are two of the four roots of the following characteristic equation

A22k4
þ k2
ð1� s2A21Þ þ s2 ¼ 0 (18)

which satisfy the following condition: Re(k1,2)40 for Re(s)40. These roots can be found analytically to give

k1;2 ¼ ð2A22Þ
�1=2 s2A21 � 1� ð1� s2A21Þ

2
� 4s2A22

� �1=2� �1=2
. (19)

The unknown constants C1 and C2 in Eq. (17) are found by substituting Eq. (17) into the boundary
conditions at x ¼ 0, Eq. (15), and then solving the obtained system of two linear algebraic equations. This
completes solution of the problem in the Laplace domain. To return to the time domain the following inverse
transform is to be applied:

u x; tð Þ ¼
1

2pi

Z gþi1

g�i1
Uðx; sÞ expðstÞds, (20)

where i ¼ (�1)1/2 and g is real, positive and greater than the real part of all singularities of U(x,s).
The inverse transform can be accomplished numerically by evaluating the following integral:

uðx; tÞ ¼
1

2p
expðgtÞ

Z o0

�o0

ReðUðx; s ¼ gþ ioÞ expðiotÞÞdo, (21)

where o and o0 are real and the latter has a sufficiently large value for the integrand to vanish. The results of
this evaluation, which was performed with y ¼ 0.01 and o0 ¼ 200, are shown in Fig. 1. The dimensionless
coefficients were taken as A21 ¼ 1.78 and A22 ¼ 0.34. These values, as well as the value of A23 ¼ 0.66 in the
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Fig. 1. Dynamic response of the non-causal model to a pulse-loading at three successive time moments.
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forthcoming analysis, is not arbitrary. As will be shown in Section 5, these values correspond to a coarse-
aggregated concrete.

Fig. 1 shows displacement u(x,t) at three successive time moments. For comparison, at each time moment
the corresponding displacement of the classical continuum model governed by the wave equation
(A12 ¼ A22 ¼ 0) is also plotted in the figure. It can be seen from Fig. 1 that the elastic field propagating
through the material has no sharp front. At any time instant, the material is disturbed not only behind but also
before the classical wave front x ¼ t. And, although the elastic field decays exponentially before the front, the
following conclusion may be drawn from Fig. 1: the model at hand is not causal. The reason for the
exponentially decaying ‘messenger’ to appear before the front is explained in Ref. [19]. What actually happens
is that when a pulse propagates through the continuum, the elastic energy is carried by propagating waves,
which have a finite propagation speed. However, every disturbed plane of the material generates not only
propagating waves but also evanescent ones (one of the wavenumbers in Eq. (19) is real, whereas the other is
imaginary once s ¼ io). These evanescent waves diffuse elastic energy instantly, thus serving as the reason for
non-causality of the model.

In the next section, the model governed by Eq. (10) is enhanced by adding one term. It is shown that such
addition makes the model causal and an explanation is given as to why this addition is natural. Later in this
paper, the equation postulated in the next section will be derived from a discrete chain that represents the
meso-structure of concrete.

4. The causal model postulated

To comply with Einstein’s causality, a partial differential equation that governs dynamic behaviour of a 1D
model must be of the same order with respect to the spatial coordinate and with respect to time. This necessary
condition of causality has been proven for the second-order partial differential equations. The author is not
aware of a proof of this condition for the higher-order equations. Therefore, in this paper this statement is just
postulated.

Since Eq. (10) is of the order four with respect to the coordinate, the necessary condition of causality
postulated above suggests that a term containing the fourth derivative over time should be added to this
equation to make the model causal. It is important to realize that this term does not violate the second Newton
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law, which says that an equation of motion must be of the second order with respect to time. One has to
remember that this is applicable to one degree of freedom and one component of a material. Considering a
heterogeneous material, one deals with at least two components. The motion of each component of the
material has to be described by an equation of the second order with respect to time. However, once the
decision has been made to model a heterogeneous material with the help of a homogenious model, the
limitation of the order of the equation of motion with respect to time becomes groundless. On the contrary, it
is natural to have this order equal to 2n�N, where n is the number of components of the material and N is the
number of dimensions considered (N ¼ 1 for 1D models).

The simplest possible term, which contains the fourth time derivative of the displacement, is u,tttt multiplied
by a constant. Thus, the following modification of Eq. (10) may be expected to satisfy Einstein’s causality:

u;tt � c2u;xx � l2A21 u;tt � c2
A22

A21
u;xx

� �
;xx

þ
l2

c2
A23u;tttt ¼ 0, (22)

where A23 is a positive constant (it must be positive to avoid instability at infinitely long waves, which
correspond to u,xx ¼ u,xxxx ¼ 0).

The dispersion equation corresponding to Eq. (22) reads

�o2 þ c2k2
� l2A21k2 o2 � c2

A22

A21
k2

� �
þ

l2

c2
A23o4 ¼ 0. (23)

When solved with respect to the angular frequency o, the following four roots of this equation can be found

o ¼ �cð2A23l2Þ�1=2 1þ l2k2A21 � ðð1þ l2k2A21Þ
2
� 4l2k2A23ð1þ l2k2A22ÞÞ

1=2
� �1=2

. (24)

The model is stable if all four frequencies defined by Eq. (24) are real in the complete range of wavenumbers.
This stability requirement imposes certain limitations on the parameters A21, A22 and A23 because not all
positive values of these parameters ensure stability.

Suppose that the parameters of the model are chosen such that the stability requirement is satisfied. In this
case the dispersion curves visualizing the (o,k) dependences given by Eq. (24) assume the shape shown in
Fig. 2 by the solid lines. To plot this figure, the following values of the parameters were used: A21E1.78,
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Fig. 2. Dispersion curves for the causal and non-causal models.
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A22E0.34, A23E0.66. For comparison, the dispersion curve governed by Eq. (11) (non- causal model) is
shown as the dashed line.

The qualitative difference between the models governed by Eq. (11) and Eq. (22) is the number of the
branches of the dispersion curve. The improved model, Eq. (22), has two branches, whereas the non-causal
model, Eq. (11), has only one. The second (high-frequency) branch of the dispersion curve is of crucial
importance for causality of the model. Indeed, because of this branch, high-frequency (higher than the cut-off
frequency of this branch) vibrations of an element of the continuum generate only propagating waves, whose
propagation velocity is bounded. No evanescent waves, which ‘diffuse’ the elastic energy instantly is generated
in this case. Thus, the high-frequency waves, which form the sharp front, propagate through the improved
model with a finite speed. Thus, the model may be expected to comply with Einstein’s causality. This
expectation is confirmed in Fig. 3, where a snapshot of the displacement is shown of the half-space, which is
excited by the pulse loading. This displacement was calculated following the same procedure as described in
Section 3 (in fact, only the equation of motion should be changed in the statement Eq. (12) to Eq. (22)) and the
same parameters as used for plotting the dispersion curves in Fig. 2.

The bold line in Fig. 3 shows the dimensionless displacement at the time instant t ¼ 10 as predicted by the
improved model. For comparison, the displacements are shown as calculated using the classical wave equation
and the non-causal model, Eq. (11). Fig. 3 shows clearly that the improved model predicts a sharp front, which
propagates somewhat faster than the classical wave front. The velocity of the front propagation can be easily
calculated from Eq. (24) by taking the limit k-N. This gives

cmax ¼ cð2A23Þ
�1=2 A21 þ ðA

2
21 � 4A23A22Þ

1=2
� �1=2

(25)

It may be noted from Fig. 3 that the displacement predicted by the non-causal and causal models, Eqs (11)
and (22) differ perceptibly in spite of seemingly small difference between the governing equations introduced
by the term proportional to fourth time derivative. This difference, however, is to be expected under the pulse
loading and with no damping accounted for, since the models indeed differ at high-frequency band
significantly. If an excitation was considered with the spectrum localized at a relatively low- frequency band
(below the cut-off frequency of the upper dispersion branch in Fig. 2) or the material damping were accounted
for, this difference would be hardly notable.
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Fig. 3. Comparison of the dynamic responses of the causal and noon-causal models.
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Thus, the proposed model, Eq. (22), is causal provided that the dimensionless parameters A21, A22 and A23

are chosen properly. One of the best ways to do this is to derive Eq. (22) from a meso-structural representation
of a heterogeneous material. This would allow to express A21, A22 and A23 using the mechanical properties of
the material components. In the next section such derivation is carried out starting from a discrete chain of
masses and springs that simplistically represent the meso-structure of concrete.

5. Derivation of causal model from a discrete 1D model of concrete

Conventional concrete can be considered as the mixture of a relatively soft cement paste and a relatively stiff
aggregate. Between these two fractions a thin interface exists, whose stiffness is even smaller than that of the
cement paste [30]. The meso-structure of concrete is shown schematically at the upper part of Fig. 4. The black
ovals in this figure represent the aggregate, the grey background represents the cement paste and the thin belts
round the aggregate particles show the interface. The lower part of Fig. 4 shows a part of an infinite chain of
masses and springs, which is adopted in this paper as a discrete 1D model of concrete. This chain is periodic
(with a spatial period l) and contains two types of masses and three types of springs. The bigger black masses
represent the inertial property of the aggregate, whereas the smaller grey masses represent that of the cement
paste. The black, grey and light grey springs represent elasticity of the aggregate, cement paste, and interface,
respectively.

The equations of motion that govern small longitudinal vibrations of the masses ma and mc about their
equilibria can be written as

€xðmÞc þ o2
c 2xðmÞc � xðmþ1Þc � xðm�1Þc

� �
þ o2

1 2xðmÞc � xðm�1Þa � xðmÞa

� �
¼ 0;

€xðmÞa þ o2
2 2xðmÞa � xðmÞc � xðmþ1Þc

� �
¼ 0;

(26)

where

o2
1 ¼ o2

c

kaki

kakc þ kaki þ kcki

; o2
2 ¼ o2

a

kcki

kakc þ kaki þ kcki

; o2
a ¼

ka

ma

; o2
c ¼

kc

mc

(27)

and xðmÞa ðtÞ and xðmÞc ðtÞ are the displacements of the masses ma and mc characterised by index (m).
To derive from Eq. (26) a partial differential equation, which would describe a stable and causal continuum,

a continualization procedure should be applied that was proposed by Metrikine and Askes [21]. In accordance
with this procedure, the displacements xðmÞa ðtÞ and xðmÞc ðtÞ of the masses of the chain should be related to the
displacements ua(x,t) and uc(x,t) of a to-be-derived continuum non-locally (instead of using the conventional
relations xðmÞa ðtÞ ¼ uaðx; tÞ and xðmÞc ðtÞ ¼ ucðx; tÞ). Namely, the continuum displacements should be expressed as
l 

l

(m)
xc

(m)
xa

kc
ki kama

mc

(m1)
xa

(m+1)
xc

2kc2kc 2kc2kc

Fig. 4. Sketch of the meso-structure of concrete and a 1D chain of masses and springs that is adopted to represents this meso-structure.
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weighted averages of the displacements of the masses of the same type that surround the central mass (m), i.e.

uaðx; tÞ ¼
1

1þ 2a
xðmÞa þ a xðmþ1Þa þ a xðm�1Þa

� �
; ucðx; tÞ ¼

1

1þ 2a
xðmÞc þ axðmþ1Þc þ axðm�1Þc

� �
, (28)

where a is a dimensionless weighting coefficient, which has to be not smaller than zero and smaller than unity.
To continualize the chain (or, mathematically speaking, to convert the ordinary differential equations with

finite difference equations, Eq. (26), to a partial differential equation), the kinematic relations, Eq. (28), are to
be inverted to give explicit expressions for the displacements of the masses xðmÞa ðtÞ and xðmÞc ðtÞ through the
continuum displacements. This inversion can be carried out by assuming that the differences xðmÞa;c ðtÞ ¼ ua;aðx; tÞ
are small, so that the following relation holds

xðmÞa;c ¼ ua;cðx; tÞ þ
X2N

k¼1

lkf ðkÞa;cðx; tÞ þOðL2Nþ1Þ, (29)

where l is the spatial period of the chain, N is the order of the to-be-derived continuum and fa,c(x,t) are
unknown deviation functions, which have to be derived in correspondence with Eq. (28). The differential
operator L ¼ lq/qx in Eq. (29) should be much smaller than unity in the sense that the result of application of
this operator to a function should be much smaller that the function itself. To enable convergence of the series
in Eq. (29), it is sufficient that the deviation functions fa,c(x,t) satisfy the following inequality:

lkþ1 f ðkþ1Þa;c

		 		5qa;cl
k f ðkÞa;c

		 		; qa;co1. (30)

To find explicit expressions for the deviation functions, the displacements xðmÞa;c ðtÞ and the displacements of
the neighbour masses xðm�1Þa;c ðtÞ are to be substituted into the kinematic relations, Eq. (28). The latter
displacements can be derived using Eq. (29) via the Taylor series expansions. This results in the following
expression:

xðm�1Þa;c ¼ ua;cðx� l; tÞ þ
X2N

k¼1

lkf ðkÞa;cðx� l; tÞ þOðL2Nþ1Þ

¼
X2N

j¼0

ð�lÞj
1

j!

qjua;cðx; tÞ

qxj
þ
X2N

k¼1

lk
X2N

j¼0

ð�lÞj
1

j!

qj f a;cðx; tÞ

qxj
þOðL2Nþ1Þ. ð31Þ

Substituting Eqs. (29) and (31) into the kinematic relations, Eq. (28), and setting each multiplier of a power
of l to zero separately, a set of recurrence relations can be obtained, ordered by corresponding powers of l. The
first five equations of this set, which are relevant for this development, are shown below

l0 : ua;c ¼ ua;c;

l1 : 0 ¼ f ð1Þa;c;

l2 : 0 ¼ f ð2Þa;c þ
a

1þ2a

q2ua;c

qx2 ;

l3 : 0 ¼ f ð3Þa;c þ
a

1þ2a

q2f ð1Þa;c

qx2 ;

l4 : 0 ¼ f ð4Þa;c þ
a

12ð1þ2aÞ

q4ua;c

qx4 þ
a

1þ2a

q2f ð2Þa;c

qx2 :

(32)

Eqs. (32) show that the odd-order deviation functions f ðjÞa;c; j ¼ 1; 3; 5 . . . are zero. All even-order deviation
functions can be expressed as linear, even-order differentials of ua,c.

With the deviation functions known, Eqs. (29) and (31) can be substituted into the equations of motion of
the masses of the chain, Eq. (26). This substitution results in the equations of motion of a gradient continuum.
To derive a second-order continuum (N ¼ 2), these equations are to be truncated to the order 4 of the spatial
period l. Before truncating, however, the classical continuum parameters (Young’s moduli Ea,c,i and material
densities ra,c) should be introduced instead of the stiffnesses ka,c,i and masses ma,c. In the 1D case under
consideration the relations between these quantities read

ra;c ¼ ma;c=l3; Ea;c;i ¼ ka;c;i=l. (33)
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Consequently, and in accordance with Eq. (27), parameters o2
c , o

2
1 and o2

2 in Eq. (35) and (36) can be
expressed as

o2
1 ¼ L2c21; o2

2 ¼ L2c22; c21 ¼ c2c
EaEi

EaEc þ EaEi þ EcEi

; c22 ¼ c2a
EcEi

EaEc þ EaEi þ EcEi

, (34)

where cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=rc

p
and ca ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea=ra

p
are the wave speeds in the cement paste and the aggregate, respectively.

Now the truncation can be accomplished to give a system of two partial differential equations with respect
to ua(x,t) and uc(x,t):

l4

1þ 2a
ðc2cð1þ 2aÞ þ 2ao2

1Þ
ð10a� 1Þ

12ð1þ 2aÞ

q4uc

qx4
� a

q4uc

qx2@t2
� c21
ð10a� 1Þð2a� 1Þ

24ð1þ 2aÞ

q4ua

qx4


 �

� l3c21
4a� 1

6ð1þ 2aÞ

q3ua

qx3
þ l2

q2uc

qt2
�

1

1þ 2a
ðc2cð1þ 2aÞ þ 2ac21Þ

q2uc

qx2
þ c21

2a� 1

2ð1þ 2aÞ

q2ua

qx2


 �

þ lc21
qua

qx
þ 2c21ðuc � uaÞ ¼ 0, ð35Þ

l4

1þ 2a
ac22
ð10a� 1Þ

6ð1þ 2aÞ

q4ua

qx4
� a

q4ua

qx2@t2
� c22
ð10a� 1Þð2a� 1Þ

24ð1þ 2aÞ

q4uc

qx4


 �

þ l3c22
4a� 1

6ð1þ 2aÞ

q3uc

qx3
þ l2

q2ua

qt2
� c22

2a

1þ 2a

q2ua

qx2
� c22

2a� 1

2ð1þ 2aÞ

q2uc

qx2


 �

� lc22
quc

qx
þ 2c22ðua � ucÞ ¼ 0 ð36Þ

Each of the above two equations is of the second order with respect to time, which complies with second
Newton law in the sense that each degree of freedom of a mechanical system is governed by an equation that
contains the mass times acceleration term and no higher time derivatives.

To obtain from Eqs. (35) and (36) a single equation, which could be compared to Eq. (22), one may apply
the following procedure. First, the integral Fourier transforms, which are defined as

Ua;cðk;oÞ ¼
Z 1
�1

Z 1
�1

ua;cðx; tÞ expð�iotþ ikxÞdxdt (37)

are applied to Eqs. (35) and (36). By applying these transforms, a system of two following linear algebraic
equations is obtained:

a11Ua þ a12Uc ¼ 0;

a21Ua þ a22Uc ¼ 0;
(38)

where

a11 ¼
l4

1þ 2a
c2cð1þ 2aÞ þ 2ao2

1

� � ð10a� 1Þ

12ð1þ 2aÞ
k4
� ao2k2


 �

þ l2 �o2 þ
1

1þ 2a
c2cð1þ 2aÞ þ 2ac21
� �

k2


 �
þ 2c21,

a12 ¼ �
l4c21k

4

1þ 2a

ð10a� 1Þð2a� 1Þ

24ð1þ 2aÞ
� l3c21ik

3 4a� 1

6ð1þ 2aÞ
� l2c21k

2 2a� 1

2ð1þ 2aÞ
� lc21ik � 2c21,

a21 ¼ �
l4c22k

4

1þ 2a

ð10a� 1Þð2a� 1Þ

24ð1þ 2aÞ
þ l3c22ik

3 4a� 1

6ð1þ 2aÞ
þ l2c22k

2 2a� 1

2ð1þ 2aÞ
þ lc22ik � 2c22,

a22 ¼
l4

1þ 2a
ac22
ð10a� 1Þ

6ð1þ 2aÞ
k4
� ao2k2


 �
þ l2 �o2 þ c22

2a

1þ 2a
k2


 �
þ 2c22. ð39Þ
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Setting the determinant of the coefficient matrix of this system to zero results in the following dispersion
equation:

a11a22 � a12a21 ¼ 0. (40)

Analysing the expressions for aij, Eq. (39), it is easy to see that this dispersion equation contains terms with
the order of l up to l8. To make the dispersion equation, Eq. (40), consistent with the adopted accuracy O(L5),
it has to be truncated by cutting off all terms which are of the order higher than l4. This simplifies Eq. (40) to
the dispersion equation of the model, which was postulated in the previous section, Eq. (23):

�o2 þ c2k2
� l2A21k2 o2 � c2

A22

A21
k2

� �
þ

l2

c2
A23o4 ¼ 0. (41)

The coefficients of this equation, however, are now known and are expressed through the material
parameters of concrete as

c2 ¼
c2
2

2

c2
1
þ2c2c

c2
1
þc2

2

; A21 ¼
c2c

2ðc2
1
þc2

2
Þ
þ 2a
ð1þ2aÞ

;

A22 ¼
22a�1

12ð1þ2aÞ
; A23 ¼

c2
2

4

c2
1
þ2c2c

ðc2
1
þc2

2
Þ
2 :

(42)

Because of uniqueness of the Fourier transforms, dispersion equation, Eq. (41), can be used to retrieve the
corresponding equation of motion. This can be done by using the following symbolic relations between the
frequencies and wavenumbers and corresponding time and space derivatives:

�o22q2
�
qt2; o42q4

�
qt4; �k22q2

�
qx2; k42q4

�
qx4.

Using these relations the following equation of motion is obtained from Eq. (41)

u;tt � c2u;xx � l2A21 u;tt � c2
A22

A21
u;xx

� �
;xx

þ
l2

c2
A23u;tttt ¼ 0, (43)

where u(x,t) is an effective deflection of the continuum. Obviously Eqs. (43) and (22) (the latter was postulated
in the previous section) are the same.

It is interesting to note that Eq. (43) describes a more consistent second-order continuum than the system of
Eqs. (35) and (36), from which it was derived. Indeed, Eq. (43) describes a causal, unconditionally stable
continuum, while one can easily check that Eqs. (35) and (36) describe a continuum that suffers from both
short-wave instability and non-causality. This seemingly strange fact has a clear explanation. The point is that
neither Eq. (43) nor Eqs. (35)–(36) are supposed to describe accurately dynamic processes, of which the
wavelength is shorter than required by the adopted accuracy O(L5). And it is precisely at these wavelengths
that the deviation between the two statements becomes apparent and the instability, as well as non-causality,
occurs. What makes Eq. (43) superior to the system of Eqs. (35) and (36) is that it takes into account all terms,
which satisfy accuracy O(L5) and only these terms. On the contrary, Eqs. (35)–(36) contain terms up to
accuracy O(L9) but far not all of them, which makes this system inconsistent.

As mentioned above, the major advantage of deriving governing equations for a higher-order continuum
from a meso-structural representation of a heterogeneous material (relative to a phenomenological
formulation of these equations) is that the coefficients of the derived equations are known in terms of
physical parameters of the material components. In the case at hand, this concerns coefficients c, A21, A22 and
A23, which are expressed through the parameters of the aggregate, cement paste and interface in Eq. (42). The
only unknown parameter in these equations is the weighting parameter a. Let us define it for a specific case
taking example of a coarse-aggregated concrete.

Suppose that the paste occupies vc ¼ 40% of the representative volume of a concrete specimen and,
consequently, the aggregate occupies va ¼ 60% of this volume (the volumetric fraction of the interface is
usually negligible). The Young’s modulus and mass density of the paste and aggregate, as well as the Young’s
modulus of the interface, depend of the type of concrete. Here, the following figures are adopted:

Ec ¼ 23GPa; Ea ¼ 40GPa; Ei ¼ 7GPa; rc ¼ 2162 kgm�3; ra ¼ 2691 kgm�3. (44)
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Substitution of these values into Eq. (42) gives

c � 2286m s�1; A21 � 1:348þ
2a

ð1þ 2aÞ
; A22 ¼

22a� 1

12ð1þ 2aÞ
; A23 � 0:66. (45)

To identify the weighting coefficient a, one can make use of Eq. (25), which gives an expression for the
maximum velocity of energy propagation in the continuum as a function of the above parameters. This
velocity, on the other hand, can be easily estimated as

cmax ¼
va þ vc

va=ca þ vc=cc

� 3594m s�1, (46)

where cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=rc

p
� 3262m s�1 and ca ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea=ra

p
� 3855m s�1 are the wave speeds in the cement paste and

aggregate, respectively.
Substituting c, A21, A22 and A23 given by Eq. (45) and the value of cmax given by Eq. (46) into Eq. (25), one

obtains an algebraic equation with respect to a. This equation can be shown to have only one root in the
interval 0pap1, which is given as

a � 0:374. (47)

With this weighting coefficient, Eq. (45) results in the following values, which were used throughout this
paper:

c � 2286m s�1; A21 � 1:78; A22 � 0:34; A23 � 0:66. (48)

Finalizing this section, let us underline its two major results. The first result is that a procedure has been
developed of theoretical identification of the relationships between the material properties of the fractions of
the original heterogeneous material and the effective parameters of the corresponding (approximate) second-
order continuum model. The second and, probably, more general result is that the presence of the fourth time-
derivative of the displacement in the equation of motion for a second-order gradient continuum naturally

follows from an accurate continualization procedure of an originally heterogeneous model. This is a strong
argument that supports the main idea of this paper that the gradient elasticity models should satisfy the
Einstein’s causality.

6. Mathematical analogy with models for longitudinal and transverse vibrations of a homogeneous bar

The 1D gradient-elasticity models of heterogeneous materials, which have been discussed in the preceding
sections, have one-to-one mathematical analogues in the theories of both the longitudinal and transverse
vibrations of homogeneous thin bars. These analogues are briefly discussed in this section with the aim to
show that the causal model, Eq. (22), corresponds mathematically to the most advanced 1D dynamic models.

Consider a thin bar with a circular cross section, which is made of a homogeneous material and axially
tensioned. The longitudinal u(x,t) and transverse w(x,t) free motions of a differential element of this bar can be
most roughly described by the following wave equations [31]:

ru;tt � Eu;xx ¼ 0, (49)

rAw;tt � Tw;xx ¼ 0, (50)

where r and E are the mass density and Young’s modulus of the bar material, A is the cross-sectional area and
T is the axial tension.

Eqs. (49) and (50) are valid under a number of assumptions, which allow to neglect the dispersive character
of wave propagation in the bar. To derive Eq. (49), the uniform stress distribution over the cross section must
be assumed and the lateral inertia should be unaccounted for. Similarly, to derive Eq. (50), one has to neglect
the bending stiffness of the bar, as well as the shearing effects. In what follows, these assumptions are
gradually abandoned and the resulting models are compared to those discussed in the preceding sections. The
order of the comparison is chosen to follow the discussion of the gradient elasticity models in Sections 2 and 3.

It seems that there are no models for a thin homogeneous bar, which are governed by Eq. (1). Most
likely, this is because of the stability requirement, the violation of which is unacceptable in structural
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mechanics. Eq. (5), however, is mathematically analogues to the following well-known equation [31]

rAw;tt � Tw;xx þ EIw;xxxx ¼ 0, (51)

which describes the transverse motion of a tensioned bar (a beam) in accordance with the Euler–Bernoulli
assumptions. Eq. (51) differs from Eq. (50) by the last term, which takes into account the bending stiffness EI

of the bar (I is the moment of inertia of the cross section).
The form of Eq. (7) coincides with the following equation

ru;tt � Eu;xx � rn2k2u;xxtt ¼ 0, (52)

which governs the longitudinal motion of the bar, once its lateral inertia is accounted for (the Rayleigh–Love
theory). In Eq. (52), v is the Poison’s ratio and k2 is the polar radius of gyration [31].

Eq. (10) is analogues to that, which governs the transverse motion of the tensioned bar in correspondence
with the Rayleigh theory, which extends the Euler–Bernoulli assumptions by accounting for the rotary-inertia
effects. The latter equation reads

rAw;tt � Tw;xx þ EIw;xxxx � rIw;xxtt ¼ 0. (53)

In the theory of structural vibrations it is known (see Refs. [31,32]) that all models introduced in this section,
Eqs. (49)–(53) cannot correctly describe even the first mode (with respect to the lateral coordinate) of the bar
vibrations at relatively high frequencies. To improve this, Timoshenko has proposed an enhanced theory for
the transverse motion of the bar, while Mindlin has done it for the longitudinal motion. The governing
equations for both these models have the same form (the physical background and the meaning of coefficients
are, of course, totally different). Therefore, to avoid unnecessary repetitions, only the governing equation
resulting from the Timoshenko theory is shown here. Taking into account the tensile force, this equation can
be written as [31]

rAw;tt � Tw;xx þ EI 1þ
T

GAk

� �
w;xxxx � rI 1þ

E

Gk
þ

T

GAk

� �
w;xxtt þ

r2I

Gk
w;tttt ¼ 0, (54)

where k is the Timoshenko shear coefficient and G is the shear modulus.
Comparing Eq. (54) to Eq. (22), one can see that these equations have identical form. The same form would

accept the governing equation of the Mindlin theory if written as a single equation. Thus, the causal gradient-
elastic model proposed in this paper corresponds mathematically to the best- known models describing the
dispersive character of wave propagation in 1D systems. This is an additional argument supporting the model
proposed in this paper.

7. Discussion and conclusions

Einstein’s causality principle requires that no signal can propagate faster than the light speed in vacuum.
This is one of the most fundamental principles of modern physics, and any general model, which is supposed
to be applicable at the complete frequency band, must satisfy it. All researchers agree with this statement.
Many models, however, are designed to work only at a specific frequency band. Homogeneous continuum
elasticity models, for example, are all applicable only at a relatively low-frequency band (at which the
lengthscale of corresponding mechanical processes is much larger than the characteristic length of the material
microstructure). Should such models satisfy Einstein’s causality? There is no consensus among researchers as
to how to answer this question in the case that non-causality is associated with the frequency band at which
the model in question is not applicable according to its original assumptions.

The author of this paper advocates the following answer to the above stated question. Imagine two models
of a material, which, with the same accuracy, describe dynamic behaviour of the material at a desired
frequency band. Imagine further that one model is causal whereas the other is not causal but its non-causality
is associated with the frequencies outside the considered frequency band. In this case, the causal model should
be preferred. Not only should it be done because it complies with Einstein’s causality. More importantly,
causal models profit from applicability of Kramers–Kronig relations [33,34] (a logical consequence of
causality [24]), which strictly relate the dispersive and dissipative properties of materials. These relations are
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widely applied for experimental identification of material properties. Not as a logical argument but definitely
as one worth mentioning, one should realize that the most classical models of continuum mechanics such as
the classical elastic continuum and Cosserat continuum do comply with Einstein’s causality.

In this paper, causality of gradient elasticity models has been discussed. It has been shown that the majority
of these models are not causal as they allow elastic energy either to travel with an infinite speed or to diffuse
instantly. A brief overview has been given of existing second-order gradient elasticity models in 1D.

A causal 1D second-order gradient elasticity model has been proposed. First, the equation of motion of this
model has been postulated on the basis of a general idea that in order to comply with Einstein’s causality,
higher-order spatial gradients in gradient elasticity models must be accompanied by higher-order time
derivatives. Then, this equation has been derived by continualizing a discrete chain of masses and springs. The
composition of this chain has been chosen to represent the meso-structure of concrete. The applied
continualization procedure has allowed to relate the material properties of the fractions of the original
heterogeneous material and the effective parameters of the corresponding gradient elasticity model.
Additionally, it has shown that the causal gradient elasticity model naturally results from accurate
continualization of originally heterogeneous material model.

A dispersion analysis of the derived causal model has shown that at a relatively low-frequency band, at
which the homogeneous gradient elasticity models are applicable, the derived causal model is almost identical
to the most advanced, though non-causal, model known in literature. Thus, both these models are equivalent
in the desired frequency band but the causal model should be preferred because of above formulated reasons.

To strengthen this conclusion, a mathematical analogy has been investigated between the 1D gradient
elasticity models and the models used in dynamics of thin rods. The proposed causal model has been shown to
be governed by equation of exactly the same form as the governing equations of the Timoshenko-beam model
and Mindlin-rod model, which are known to be the most advanced models for the thin rods.
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